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In this paper we give first- and second-order conditions to characterize a local minimizer of
an exact penalty function. The form of this characterization gives support to the claim that the
exact penalty function and the nonlinear programming problem are closely related.

In addition, we demonstrate that there exist arguments for the penalty function from which
there are no descent directions even though these points are not minimizers.
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1. Introduction

The nonlinear programming problem can be written as

minimize  f(x),
subjectto ¢i(x)=0, iEM,, @)
$i(x)=0, jEM,,

where M, and M, are index sets and the functions f, ¢;, i € M, UM, are
continuous and map R" to R'. Problem (1) is closely related to the exact penalty
function

px,p)=p - f(x)= 3 min©, $(x)+ 3 |4(x)] 2
1 JEM,

iEM,

Recently, a number of nonlinear programming algorithms have been proposed
which generate descent directions for p (see [3, 6, 9, 12]). By ensuring a
sufficient decrease in p, at each step, global convergence properties can be
attained.

The major purpose of this paper is to present optimality conditions for the
penalty function p. These conditions emphasize and elucidate the close relation-

* This research is partially supportéd by the Natural Science and Engineering Research Council
Grant No. A8639 and the U.S. Department of Energy.
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ship between p and problem (1). Unfortunately, perhaps, the optimality charac-
terizations do not include feasibility to (1). Clearly, a consequence of this fact is
that we may be optimal to p but not even feasible to (1). Indeed, we give an
example, in Section 3, of a problem which contains a point x° with the following
properties:

(1) x° satisfies the first-order optimality characterization for p,

(2) x°is not a local minimizer of p,

(3) x°is not feasible to (1),

(4) there does not exist a descent direction for p, at x°.

Since x° is not feasible, it is obviously not an ideal terminating point for an
algorithm designed to solve (1); however, a p-descent direction algorithm cannot
leave x°.

2. Necessary and sufficient conditions

In this section we present optimality characterizations for p. That is, we ask
"(and answer) the question: when is a point x° a minimizer of p?

First we introduce a few definitions and some notation.

Define

Ar={ie M| $:(x") =0},
Ay ={i € My| $:(x") = 0},
Vi={ie M| (") <0},
Va={i € M, | |:(x")|  0}.
Let n and y be vectors of dimensions |A,| and |A,| respectively, whose
components, in both cases, can attain only the values 1 or —1.
In the following theorem we show the equivalence between p and a class of

nonlinear programming problems. Deducing the optimality conditions from this
relationship is then straightforward.

Theorem 1. Assuming that f, ¢;, i € M; U M, are continuous, then
x° is a local minimizer of p (for a given )
<&
x° is a local minimizer to the problems:

minimize {,Lf(x)— S i)+ S (sgn di(x%) - i(x)

i€, i€,
+ 2 Hmi — Di(x) + Z‘ 'Yid’i(x)}, 3)
i€EA; i€EA,
subject to mpi(x) =0, i€ A,
Yihi(x) =0, (€A,
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for all possible vectors m and vy satisfying the property that each component is
either 1 or —1.

Proof. (i) Suppose x° solves p(x) but not (3), for some 7, . The non-empty
feasible region for this problem is defined by

mdi(x)=0, i€ A,
Yii(x) =0, i€ A,

But in this region p is equivalent to the objective function of (3) (if we are
sufficiently close to x°), which implies that x° is not a local minimizer of p, a
contradiction.

(ii) Suppose x° solves (3), for all 7, y, but is not a local minimizer of p. It
follows that there exists an infinite sequence {x*} converging to x°, and satisfying
p(x*) < p(x°. But clearly a subsequence of {x*} is entirely contained in a region
defined by

mdi(x) =0, i€ A,
Fb(x)=0, i€ A, |
for some 17, ¥. Clearly then x° is not a local minimizer to (3), for n =9,y =) a
contradiction.
Since the optimality conditions for problem (3) are well-known [7], we can

now easily derive conditions for p. (To simplify notation, all function arguments
are assumed to be x° when they are not explicitly written.)

Corollary 1 (first-order necessary conditions). Assuming that the constraint and
objective functions are continuously differentiable, and that {V¢;(x") I iEAU
A,} is linearly independent, then necessary conditions for x° to be a local
minimizer of p are: There exist vectors A, w satisfying

® #Vf‘.g V¢i+i§ sgn(¢)Ve; =i; Aivd’i"‘i; w;Vd;,

(ii) 0<\=<1, i€EA,|,
—-1=w;=1, i€A,
Proof. Let us consider two particular problems from the class represented by
(3). Let P, refer to the problem where
| m=1, i€A,
vi=1, i€A,,
and let P; refer to the problem where

7'!':1’ ieAl\{]}9
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Define
Vp = uVf- 2, Vot > sen(d)Ve.

Since x° is optimal to P,, there exists A, w, such that A =0, and
V— = A,V P W,'V i 4
p .-g(, ¢ ;gz ¢ 4)
Since x° is optimal to P;, there exists A’, w such that A’ =0, and
Vp -V = AV — AV — Y wiVe. S
p o ie;;\(i} Lo Vb l_;z ¢ 5)
Considering (4) and (5) along with linear independence gives
AiZA{:’ iEA]\{j}’
w; = W{:, i€ A27
and (1-A)=A. But Ai=0>;<1.

In a similar fashion we can obtain the bounds on w.

Corollary 2 (second-order necessary conditions). Assuming that f, ¢; i€
M, U M, are twice continuously differentiable, and the set {V$;(x°) l iEA UA,}
is linearly independent, then necessary conditions for x° to be a local minimizer
of p, are: There exist vectors A, w satisfying

(1) 7Y i;] Vo, + i;2 sgn(¢)Ve; = i;l AV — iezz wiV i,
(i1) 0=A=1, VieA,,

-1l=w;,=1, Vi€EA,,
(iii) Vy satisfying y'™V¢; =0, Vi E A, U A,,

)’T[Mvzf—"; V2¢i+i; Sgﬂ(d’i)Vz(bi—i; AiV2¢i+i; Wivztf)i])’ =0.

Proof. The result follows directly from Theorem 1, the second-order necessary
conditions for nonlinear programming [7], and Corollary 1.

Corollary 3 (second-order sufficiency). Assuming that f, ¢, i€ MU M, are
twice-differentiable functions, then sufficient conditions for x° to be an isolated
local minimizer of p are: There exist vectors A, w satisfying

@ uVf —‘; V¢‘+.~; sgn(cb.-)V¢.~=i; A‘Vd"’_.-;; w;V i,

(i) 0=A<1, Vie A,
-l=w,=<1, V,EA,
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(iii) Vy satisfying (y'V¢;=0,i €E A,) and (y'V¢;=0,i € A, and A;>0) and
(y"™V¢; =0,i € A, and A; =0)

Y [uVF -3 V- 3 sen)Vi— 5, AT+ S

eV, i€

w,-V2¢,.] y>0.

2

Proof.
Follows immediately from Theorem 1 and the second-order sufficiency con-
ditions for nonlinear programming [7].

Remarks. (1) We note that if x° is feasible to (1), then the preceding results
characterize local minima of (1), with the additional provisos that w is bounded
above and below by 1, and A is bounded above by 1.

(2) Pietrzykowski [13] showed for all u sufficiently small, a minimum of (1) is
also a minimizer of p (under a linear independence assumption). Luenberger [11]
demonstrated that, in the convex case, the threshold value of u is

1
max{A¥, [w*[}

where A* and w* satisfy (6)

Vi(x% = i; AV, —igz wiVe;.

Charalambous [4, 5] showed that this bound is valid without making convexity or
linear independence assumptions, but assuming that x° satisfies the second-order
sufficiency conditions for nonlinear programming [7] (see also Han and Man-
gasarian [10]). We note here that this latter result follows trivially from Corollary
3. That is, if u satisfies (6), and x° satisfies second-order sufficiency for (1), then
(1), (i1), and (iii) of Corollary 3, hold.

3. Non-minimal first-order points

Let us call x° a stationary point of p if x° satisfies (i) of Corollary 1. If, in
addition, x° satisfies (ii), we term x° a first-order point of p.

It is entirely possible, of course, for x° to satisfy the first-order conditions
whilst not satisfying the second-order requirements. Often, in nonlinear pro-
gramming one is content to obtain a first-order point. However, if one bears in
mind that our interest in minimizing p is to obtain solutions to (1) and that such a
point may not be feasible to (1), it is clear that first-order points of p may be
totally unacceptable.

Often, a reasonable strategy to leave such unacceptable points is to reduce the
parameter u. This reduction gives additional weight to the violated constraints
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and a descent direction is then usually available. That this is not always the case
will be seen below.
Consider the problem
Minimize f(x,y)=x*+y?,
subject to  ¢y(x, y)=x2+ y2—2.25=0, , @)
Pox, y)=x+y-2=0
with starting point (x,, o) = (V1.125, V1.125).
Thus
f(xo, yo) = 2.25,
b1(xo, y0) =0,
&2(xo, yo) >0,
V£ (x0, y0) = Vbi(x0, yo) = V1,125, 2V 1.125)",
Va(xo, yo) = (1, D

Our penalty function is

p(x, y, n) = uf (x, y) —min(0, ¢i(x, )) + |da(x, ¥)|.

Let us define a continuously differentiable function

pi(x, y, ) =p - f(x,y)+ dox, y).
Thus

Vpi(xo, Yo, ) = Quxo+ 1,2y, + )7,
2 0 2 0
Gpl(xO’ y09 #’) = [ (l).L 2[1«]’ and Gd’l = [0 2]-

We note that

iy 1
Vpi(x0, y0) = V1(xo, yo)(p, +ﬁ_)
)

and thus (x,, yo) is a stationary point for p. In fact if 0 <pu <1—(1/2x,), then
(xo, Yo) is a first-order point for p.

Claim 1. For 0<u <1-(1/2x,), A a descent direction for p at (x,, yo).

Proof. Any direction d in R? can be written as d=d'+d? where
(dl)TV¢l(x09 y0) = 0: d2 = ﬁv¢](x03 yO)s B ER. Thus’ if we define A = 12 + (1/2x0)s

p(xo+ ady, yo+ ad,) = pi(xo, yo) + a[BA — min(0, B)]|Vé(xo, yo)l?
+ %asz{ [2(‘)’“ 2(” — min(0, sgn(B)) [?) g]}d,

for positive a sufficiently small.
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Now, using the fact that 0 <A <1, and considering the three cases >0,
B =0, B <0, separately, it is easy to see that d is an ascent direction.

Claim 2. For all positive p., (xo, yo) is not a local minimizer of p.

Proof. Clearly, along the curve x*+y?>—2.25=0, f and ¢, remain constant.
However, ¢, decreases as we move from (x,, y,) along this curve and thus
p(x, y, u) decreases for any u >0.

Therefore (x,, yo) is a point such that p(x,, yo, 1) has no direction of descent
for u <1-—(1/2xp) (=0.52856) and yet (xo, ¥o) is not a minimizer of p, for any
positive u. We emphasize that although (x,, yo) is a first-order point for p, it is
not an acceptable solution to the original constrained problem since it is not
feasible.

Therefore we have constructed a simple problem exhibiting a point from
which p can be decreased only by following a curved path. Furthermore, it is not
unlikely that a p-descent algorithm will converge to such a point x°, due to the
fact that x° is a first-order point for p. For example, the projection algorithm of
Conn and Pietrzykowski [6] will always converge to (V1.125, V1.125) in the
above example if the method is started at any point satisfying y = x.

4. Concluding remarks

Since it has become popular to use the exact penalty function (2) in nonlinear
optimization procedures, the simple optimality characterizations given here
should prove useful in future algorithmic development. In particular, the second-
order conditions should aid in the design of second-order methods to minimize p
(see [3]). In addition, the similarity between the optimality conditions for p and
those for nonlinear programming reinforce the idea that the two problems are
closely related. This is further justification for the design of nonlinear pro-
gramming methods based on the minimization of p.

The example given in Section 3 demonstrates, however, that even if second-
order information is available, it is not always possible to find a p-descent
direction. This suggests that in some cases, either a nonlinear step, or a
perturbation might be necessary.

The function p is a piece-wise differentiable function. As such, optimality
characterizations are closely related to those for other piece-wise functions. In
particular, these results relate to those given in [1,2,5, 8] concerning optimiza-
tion in polyhedral norms.
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